ARTICLE IN PRESS

European Journal of Internal Medicine xxx (2008) xxx-xxx

European Journal of Internal Medicine

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejim

54

Education in Internal Medicine

A French national research project to the creation of an auscultation's school: The ASAP project

Emmanuel Andrès ^{a,*}, Sandra Reichert ^b, Raymond Gass ^b, Christian Brandt ^c

- ^a Department of Internal Medicine, Clinique Médicale B, CHRU Strasbourg, Strasbourg, France
- ^b Technical Academy Fellow, Alcatel-Lucent, Chief Technical Office, Strasbourg, France
- ^c Center of Clinical Investigation and Research, CHRU Strasbourg, Strasbourg, France

ARTICLE INFO

Article history:

12

13

14

15

16

17

18

19

20

21

22

23

25

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Received 6 June 2008

Received in revised form 6 August 2008

Accepted 21 August 2008

Available online xxxx

Keywords:

Auscultation

E-auscultation

E-learning

Auscultation' school

Sound analysis

ABSTRACT

Auscultation of pulmonary sounds provides valuable clinical information but has been regarded as a tool of low diagnostic value due to the inherent subjectivity in the evaluation of these sounds. This paper describes an ambitious study of in the so-called ASAP project or "Analyse de Sons Auscultatoires et Pathologiques". ASAP is a 3-year-long French collaborative project developed in the context of the *News Technologies of Information and Communication*. ASAP aims at making evolve the auscultation technics: by 1) the development objective tools for the analyse of auscultation sounds: electronic stethoscopes paired with computing device; 2) the creation of an auscultation sounds' database in order to compare and identify the acoustical and visual signatures of the pathologies; and 3) the capitalisation of these new auscultation techniques around the creation of a teaching unit: "Ecole de l'Auscultation". This auscultation's school will be destined to the initial and continuous formation of the medical attendants.

© 2008 European Federation of Internal Medicine. Published by Elsevier B.V.

1. Introduction

Since the invention of the first stethoscope by the French physician René Laënnec in 1816, auscultation via a stethoscope is widely used by physicians as a simple, non-invasive and patientfriendly diagnostic method of chest diseases, where the sounds heard are correlated with the underlying pulmonary pathology [1,2]. Despite its popularity, however, a stethoscope is not an ideal acoustic instrument since it does not provide a frequency-independent transmission of sounds. Auscultation of pulmonary sounds provides valuable clinical information but has been regarded as a tool of low diagnostic value due to the inherent subjectivity in the evaluation of these sounds. In addition, auscultation is a subjective process that depends on the experience and hearing capability of the individual, which may lead to a large variability in findings. Moreover since auscultation does not allow a permanent record of data, long-term monitoring of pulmonary sounds in follow-up studies is not possible. Over the last 30 years, advancements in the field consist of digital signal processing, analysis of waveforms by computer and recording of respiratory sounds but to date, there is only research and no development in clinical practice [1].

E-mail address: emmanuel.andres@chru-strasbourg.fr (E. Andrès).

In the context of the MERCURE telemedicine platform, we started a 47 project called ASAP. It deals in developing objective tools for the 48 analysis of auscultation sounds and creating an auscultation sounds' 49 database in order to compare and identify the acoustical and visual 50 signatures of the pathologies. Finally, it aims at capitalizing of these 51 new auscultation techniques around the creation of a teaching unit: 52 the Auscultation's School.

2. Context of the project

ASAP or "Analyse de Sons Auscultatoires et Pathologiques" is a 3-55 year-long French collaborative project [1]. It is part of a collaborative 56 telemedicine platform called MERCURE or "Mobile Et Réseau pour la 57 Clinique, l'Urgence ou la Résidence Externe". MERCURE deals with 58 projects for remote monitoring or in clinical context thanks to modern 59 tools principally coming from the *News Technologies of Information* 60 and Communication (Fig. 1). STETAU is the first project of the MERCURE 61 platform. It aims at providing the patient and medical staff, 62 measurement tools that are non-invasive, mobile, communicant and 63 that allows to transmit vital information by a secured way, objectively 64 qualified by signal processing tools. Thus, physicians will have access 65 to a tool for remote monitoring and exploration of cardiac and 66 pulmonary sounds. ASAP aims at making evolve the auscultation 67 techniques by:

-the development objective tools for the analyze of auscultation 69 sounds: electronic stethoscopes paired with computing device 70

0953-6205/\$ – see front matter © 2008 European Federation of Internal Medicine. Published by Elsevier B.V. doi:10.1016/j.ejim.2008.08.013

Please cite this article as: Andrès E, et al, A French national research project to the creation of an auscultation's school: The ASAP project, Eur J Intern Med (2008), doi:10.1016/j.ejim.2008.08.013

^{*} Corresponding author. Service de Médecine Interne, Diabète et Maladies Métaboliques, Clinique Médicale B, Hôpital Civil-Hôpitaux Universitaires de Strasbourg, 1 porte de l'Hôpital, 67091 Strasbourg Cedex, France. Tel.: +33 3 33 88 11 50 66; fax: +33 3 33 88 11 62 62.

72

73

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

98

100

Fig. 1. The MERCURE platform with the projects STETAU and ASAP.

- -the creation of an auscultation sounds' database in order to compare and identify the acoustical and visual signatures of the pathologies (Fig. 1)
- -the capitalization of these new auscultation techniques around the creation of a teaching unit: «Ecole de l'Auscultation». This auscultation's school will be destined to the initial and continuous formation of the medical attendants.

Auscultation is the first medical act that the medical students can realize on patients; it is realized empirically. Our project proposes to introduce an evidence-based medicine dimension at auscultation thanks to an association with signal processing, visualization and archiving technologies [2]. These new technologies will be considered for the formation of the future physicians and will be accessible by elearning. In the same way, the creation of a worldwide database named WebSound is an indispensable asset for capitalizing these news technologies around a pertinent and exhaustive knowledge base. An example of interesting utilization of the auscultation sounds database is the formation and the training of a physician to a specific pathology. Moreover, it will be possible to share auscultation sounds between experts thanks to a unified format. Thus, they will be able to discuss about a case and to affine their diagnosis. Finally, our project aims at initializing fundamental research works for the definition of a visual and acoustical signature of pathology. The first pathologies studied will be asthma, bronchitis, CODP and cardiac pathologies [2]. The success of the projects is conditioned by the definition of standard formats of the data and exchange protocols.

3. Goal of the project and main technological challenges

The studied system is a pair:

a communicant electronic stethoscope: a stethoscope with possibilities of recording, send sounds to a computing device (PC, PDA...)

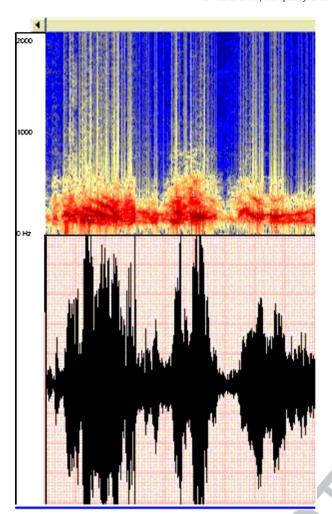
a software to process auscultation sounds: auscultation enter in 102 evidence-based medicine thanks to sounds transformed in images, 103 objective and quantifiable data, transmission, comparisons, archiv- 104 ing [3,4].

Our project aims at deploying this system on a medical com- 106 munity and at collecting an important number of qualifying sounds 107 in order to create a referential [4–6]. Thus, the global system is not 108 only a measurement tool, but also a diagnosis tool that fundamen- 109 tally replaces the auscultation medical act within clinical semiology 110 [2,6,7].111

4. Our value-added 112

Some projects or products already propose an evolution of the 113 stethoscope [3,8]; we can quote the stethoscope Littmann or Jabes. 114 Some firms propose as well as their stethoscope, a CD-Rom with 115 auscultation sounds... Nevertheless, they only allow a basic consulta- 116 Q1 tion with some examples, most theoretical, and that are neither 117 interactive nor a diagnosis support. In our project, our ambition is not 118 to propose a stethoscope and to provide in addition sounds, but the 119 exact opposite. Indeed, we will propose a worldwide sound database 120 with visual and acoustical signatures (Fig. 2), that allows to consult 121 and analyze sounds, realize standard exchange of data. These sounds 122 will, all the more, be a support for learning auscultation [2,9]. From 123 those data, a worldwide auscultation sounds database could be 124 created. It will list an important quantity of data and will allow to 125 create models or criteria to improve detecting of pulmonary and 126 cardiac diseases [3]. Another innovative aspect of our project is to 127 make diagnosis aid.

5. Description of the ASAP project


As described on the Fig. 3, there are some major phases in the 130 project [1]. The first point is the realization of a worldwide 131

129

187

188

196

Fig. 2. Example of visual representations with phonopneumogram and spectrogram of a respiratory cycle with several crackles in a patient with COPD.

auscultation sounds database (named WebSound). Then, health professionals and medical students could use this database [3,9]. The students would dispose of a diversified palette of sounds via new technologies of communication and information. It will allow to make continuous formations concerning precise pathologies. Thus, the Auscultation's School will be created. Besides, in order to allow the inter-connection of the information systems of the hospitals, we are working on the normalization of the used formats. Afterwards, it will be possible to exchange sounds between experts, thanks to a unified format. The expert could discuss about a medical case, and refine the diagnosis. A study at the state of the art will be realized for the sounds' analysis, in order to be able to qualify and compare them. Finally, the database will be used to initialize research works concerning the definition of the acoustical signature of a pathology [4,7]. The aim is to make auscultation more objective and pre-detect pathology.

6. Perspectives: the Auscultation's School

132

133

134

135

 $\frac{136}{137}$

138

139

140

141 142

143

144

145

146 147

148

149

150

151

152

 $153 \\ 154$

In a nutshell, it can be said that auscultation is an individual act, difficult to share. On the contrary, the Auscultation's School will lean on an objective definition of the sounds useful for teaching and diagnosis aid [2,9]. The Auscultation's School will have for purpose to learn to student and professionals the new available tools. In the same way, research programs will try to detect new

markers, detect pre-markers from some pathologies [7]... The 155 Q2 project begins by the scientific and clinical validation of the service 156 for several pathologies: COPD, asthma, bronchitis and several 157 cardiopathies such as cardiac failure, aortic and mitral stenosis 158 (Fig. 4). This step allows to collect auscultation sounds that are 159 categorized and qualified thanks to an intelligent comparison and 160 evaluation of the sounds. The final goal is to create a worldwide 161 referential interconnected to medical study centers, pharmaceu- 162 tical research laboratories and auscultation sounds processing 163 systems. Empirical methods provides already results to show the 164 value-added of the analyze and the comparison of the sounds for 165 instance for the correlation between the pulmonary blocking of a 166 patient with cystic fibrosis and the rate of detected crackles, the 167 evolution of the acoustic signature of a cardiac valve... The main 168 strengths of such a referential are: 1) improving the incontrover- 169 tible medical act that is auscultation, by making it objective, and 170 factual, to share, histories and compare the data; 2) lean on the 171 new technologies to push the exploitation of auscultation sounds 172 as a non-invasive exam and pertinent diagnosis aid and local or 173 remote monitoring; and 3) create a new language exploitable by all 174 the profession [2,4].

The different elements present in the Auscultation's School will 176

- the good practices of auscultation: how to auscultate, what are the 178
 abnormalities researched, the stethoscope...
- the classical sounds in the various disciplines: Cardiology, 180
 Pneumology, Pediatric, Reanimation, ... the identification of 181
 crackles, wheezes, and their correlation with the following of a 182
 pathology...
- the new auscultation tools: the electronic stethoscope, signal 184 processing tools, visualization of the sounds and interpretation of 185 the obtained images...
- the ongoing research project
- bibliographical references.

The access to the teaching could be initial or ongoing training. 189 Modern learning tools will be privileged. This formation will be 190 accessible by each medical professional, and maybe more.

The first goal of such an initiative is the repositioning of the 192 auscultation as a fundamental non-invasive exam in the medical 193 diagnosis; while pushing to potentialities thanks to the new 194 technologies.

7. Conclusion/Future work

Today we are testing and studying different algorithm in the 197 context of the ASAP project. The next step will consist in 198 exploiting all the diversity of the sound. This augmentation of 199 the spectrum studied and linked to signal analysis techniques 200 will allow the definition of new characteristic markers. Pre- 201 vious studies demonstrate the need of performing an exhaustive 202 scientific approach, that account of both the definition of a 203 semiology, the consolidation of definition of known characteristics 204 markers, the definition of common or even universal semantics, 205 the development of determinist tools that will allow the detec- 206 tion of these markers (personal communication: e-Auscultation, 207 towards new practice. Workshop on e-auscultation, European 208 ICARE project, Portoroz Sloenia, 2008, May 5). It is precisely the 209 context of an ambitious study of in the so-called ASAP project. This 210 study is handled by a multidisciplinary team including medical 211 from CHRU de Strasbourg, Researchers of the Université Louis 212 Pasteur, IRCAD for web-based teaching tools, Alcatel-Lucent 213 research teams for the development of the tools and algorithms. 214 Among the most identified outcome from the project, it is force in 215 to create auscultation school hosted by the "Faculté de Médecine 216 de Strasbourg".

E. Andrès et al. / European Journal of Internal Medicine xxx (2008) xxx-xxx

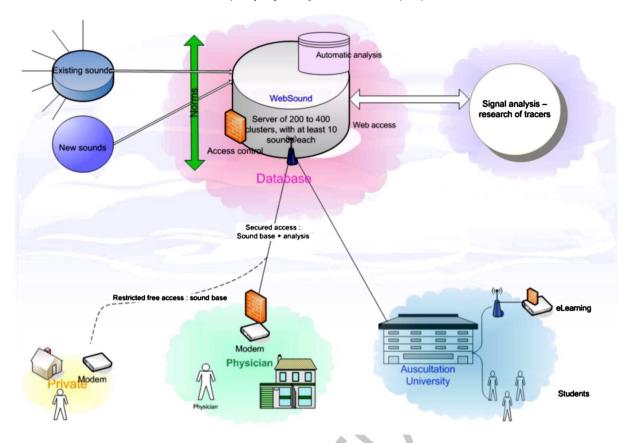


Fig. 3. ASAP project.

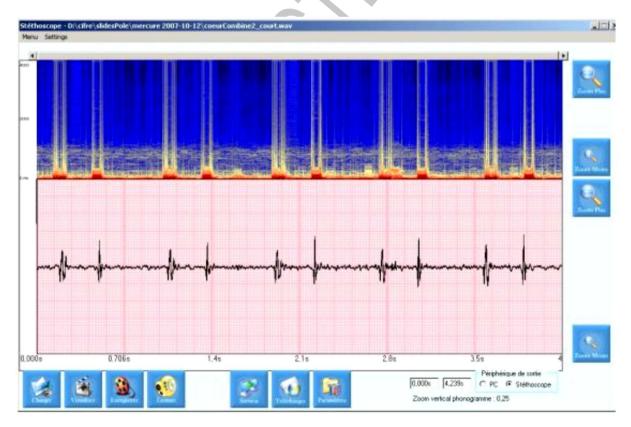


Fig. 4. Phonocardiogram and spectrogram of a cardiac cycle in a normal subject.

Please cite this article as: Andrès E, et al, A French national research project to the creation of an auscultation's school: The ASAP project, Eur J Intern Med (2008), doi:10.1016/j.ejim.2008.08.013

E. Andrès et al. / European Journal of Internal Medicine xxx (2008) xxx-xxx

Acknowledgment 218

> This study is supported by the ASAP project (ANR convention n° 2006 TLOG 21 04).

References

219

220

221

222

223

224

225

226

241

- [1] http://lsiit-miv.u-strasbg.fr/lsiit/perso/collet/ftp/Projets/ASAP.pdf; June 2008.
- [2] Andrès E, Brandt C, Gass R. De l'intérêt de caractériser les sons de l'auscultation pulmonaire à la création d'une école de l'auscultation... Presse Med 2008;37:925-7.
- [3] Earis JE, Cheetham BM. Future perspectives for respiratory sound research. Techniques for respiratory sound analysis. Eur Respir Rev 2000;10:636-40.

- [4] Reichert S, Gass R, Brandt C, Andrès E. Analysis of respiratory sounds: state of the 227 art. Clin Med Circ Respir Pulm Med 2008;2:45–58.
- [5] Sovijarvi AR, Malmberg LP, Charbonneau G, Vandershoot J. Characteristics of breath 229 sounds and adventitious respiratory sounds. Eur Respir Rev 2000;10:591-6.
- [6] Sovijarvi AR, Dalmasso F, Vanderschoot J, Malmberg LP, Righini G, Stoneman SA. 231 Definition of terms for applications of respiratory sounds. Eur Respir Rev 232 2000;10:597-610.
- Reichert S, Gass R, Brandt C, Andrès E, L'auscultation pulmonaire à l'ère de la 234 médecine factuelle. Rev Mal Respir 2008;25:1-9. 235
 [8] Welsby PD, Parry G, Smith D. The stethoscope: some preliminary investigations. 236
- PMJ Online 2003;79:695-8. 237
- Sestini P, Renzoni E, Rossi M, Beltrami V, Vagliasindi M. Multimedia presentation of 238 lung sounds as learning aid for medical students. Eur Respir J 1995;8:783-8. 239 240

